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The development of advanced manufacturing techniques is a 
key contributor to US industrial competitiveness and energy 
efficiency. Conducting experiments on manufacturing 
processes can be both time consuming and costly, which calls 
for the use of computational simulation. Truchas is a software 
suite written in modern Fortran that is used to simulate a 
number of different manufacturing methods, such as metal 
casting and additive manufacturing, with the goal of 
obtaining crucial design information without performing 
physical experiments. 

A key and very time consuming component of Truchas deals 
with the advection of interfaces separating immiscible media.  
In order to optimize the advection segment of the code, our 
research is focused on the implementation of high-level 
OpenMP, vectorization, and code restructuring. These 
changes are done on Pececillo, a mini-app of Truchas.

Motivation
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Our overall task is improving the speed of Pececillo using three different approaches: 
high-level OpenMP (HLOMP), vectorization, and code restructuring.
• High-level OpenMP is implemented around computationally intensive routines.
• Vectorization is applied in regions where multiple data undergo the same math 

operation (SIMD).
• Code restructuring consists of reorganizing the code to remove idling time, remove 

repetitious tasks, remove excessive memory movement, and effectively sharing 
variables.

Intel Haswell and Knights Landing (KNL) architecture systems were used in this study.
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• Auto-vectorization initiated with Intel compiler flags. Additional flags are used to 
instruct the compiler to use AVX512 instructions and alignment of vectors.

• Many regions of the code were vectorized without any manipulation, however, there 
were several regions that required restructuring based on the optimization report 
produced from the Intel compiler. 

• When restructuring code for optimization, there is a tradeoff between readability and 
performance.

OpenMP
• High-level OpenMP requires minimizing the number of parallel regions, proper 

variable scoping, allocation, deallocation, etc (opening and closing parallel regions 
have costly overhead).

• Nested function and subroutine calls from object oriented Fortran.
• Barriers, master regions decrease threading efficiency.
• Alteration of scope when changing parallel region.

Vectorization
• Most efficient when applied to large loops with high arithmetic intensity. 
• High modularity of the code causes most loops in code to be small, which suffer 

from slowdown if vectorized.
• Compiler favors explicit code, but the level of explicitness can be unpredictable. 
• Vectorization can cause slowdowns; needs to be checked on a case by case basis.
• Unstructured grids are not easily vectorizable due to indirect addressing.

Code restructuring
• Restructuring for optimization tends to make the code messy and difficult to read.
• Code is large and well written so there are no easy places to start.
• Goes against software design best practices.

OpenMP
• 10.66x speedup factor with KNL 

with 272 threads.
• 1.5x speedup factor with 

Haswell on 72 threads.
• Single parallel region even with 

OOP code structure.
• Some barriers can’t be avoided 

due to algorithm being heavily 
dependent on prior 
computations as well as 
allocations/deallocations.

Material layout for the  
Rayleigh Taylor 
instability

Tests on Volume of Fluids (VOF) were run on Intel® Xeon® Processor E7-8880 v3 
(Haswell) and Intel® Xeon Phi™ Processor 7250 (Knights Landing).
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Data Dependent Algorithm

Well-aligned Array Access:Indirect Accessing:

Unrolling Loops:

Inlining Functions:

f(:) = 1
do i=1,n

f(i)=1
end do   

f(j(:))
F_new(i) = 
f(j(i))
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do i=1,3
f(i)=0

end do   

f(1)=0
f(2)=0
f(3)=0   

do i=1,n
f(:)=function(i,…)

soln=soln+f(:)

end do

do i=1,n

f(:,i)=function(i,…)

end do

do i=1,n

soln=soln+f(:,i)

end do

Compute on Mesh 
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• High-level OpenMP in the Navier-Stokes Solver.
• Further Optimizations around OMP DO regions and OMP BARRIERS.
• Investigate cache use on the KNL processor and the plateau after 10 threads (KNL).
• Adjust data structures for better vectorization.
• MPI + OpenMP is a natural next step for more parallization.
• Determine why scaling performance is poor on Haswell.

g(:) = gradient(f) call compute_gradient(f,g)

DO t=0,tf,dt

!$OMP PARALLEL

!parallel 
computations

!$OMP END PARALLEL

END DO

!$OMP PARALLEL

DO t=0,tf,dt

!parallel computations

END DO

!$OMP END PARALLEL

Attempt to open and close a parallel region only once. 
Start the parallel region low and broaden for separate 
sections.  Merge the parallel region when possible[1].

Reduce memory usage by changing array functions to 
subroutines.

subroutine sub_1(f,g) ! Called in parallel region
real(r8), intent(inout) :: f,g
real(r8), save :: h(N)
!! Process done on h, all threads alter same h

end subroutine sub_1

Use save to force OMP SHARED properties upon 
variables in parallel regions.

Finally optimize around OMP DO regions and barriers. 
Attempt to reduce thread spinning.

Final HLOMP pattern 
implemented in Pececillo

Explicit Loops:

Loop-carried dependencies:

• At max number of threads, KNL 17% faster than Haswell.
• Decent strong scaling occurs on the KNL up to about 10 threads only.

Vectorization
• Vectorization and code optimization gave significant speed-ups in  the 

arithmetically intense subroutines.

Future Work

Methods applied to 
Gradient

Cumulative 
speedup in 
serial (KNL)

Explicit Loops and 
inlining

2.03

+ Unrolling 3.31

+ Indirect 
addressing

3.77

+ Pre-compute data 4.00

f=sum(a,b) f=a+b

!$OMP END DO
!$OMP END DO 

NOWAIT

Possible improving cache use.

Methods applied to 
Volume

Cumulative 
speedup  in 
serial (HW)

Nested 
subroutine 

1.2

+ Inline function 1.5

+ Force 
vectorization
with SIMD dir

1.65

Methods in 
nested 
subroutine

Cumulative 
speedup in 
this 
subroutine

Indirect
addressing

1.2

+ Inline
functions

2.5

+ Force 
vectorization
with SIMD dir

2.7

OpenMP patterns and code restructuring

Commonly used fixes for optimization


